COVID-19 Antigen Nasal Test Kit

(Nasal)

INTENDED USE

The COVID-19 Antigen Nasal Test Kit is an *in vitro* immunoassay. The assay is for the direct and qualitative detection of SARS-CoV-2 viral nucleocapsid protein from nasal secretions. **This test is intended for professional use only.**

PRINCIPLE

The COVID-19 Antigen Nasal Test Kit detects SARS-CoV-2 viral antigens through visual interpretation of color development. Anti-SARS-CoV-2 antibodies are immobilized at the test region of the nitrocellulose membrane. Anti-SARS-CoV-2 antibodies conjugated to colored particles are immobilized on the conjugated pad.

The nasal secretion, collected by the intended user, is supposed to be mixed with the extraction buffer, which is individually packed in the kit.

During testing, target antigens, if present in the nasal secretions, will be released into the extraction buffer. As the specimen migrates along the strip by capillary action and then interacts with reagents on the sample pad, the target antigens will bind to anti-SARS-COV-2 antibodies on the conjugate pad. Consequently, the antigen-antibody complex will be captured by the anti-SARS-CoV-2 antibodies immobilized at the test region. Excess colored particles will be captured at the control region of the NC membrane.

The presence of a colored band in the test region indicates a positive result for the SARS-CoV-2 viral antigens, while its absence indicates a negative result. A colored band at the control region serves as a procedural control, generally indicating that a proper volume of specimen has been added and membrane wicking is working.

MATERIALS

Materials Provided

· Individual packaged test

· Package insert

Materials Required but Not provided

· Clock, timer or stopwatch

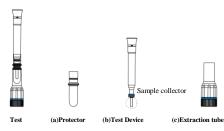
PRECAUTIONS

- For in vitro Diagnostic Use Only.
- Caution should be taken when inserting the sample collector into the nasal cavity.
- DO NOT ingest.
- · Read the Package Insert prior to use. Directions should be read and followed carefully.
- Do not use kit or components beyond the expiration date.
- The device contains material of animal origin and should be handled as a potential biohazard. Do
 not use if pouch is damaged or open.
- Test devices are packaged in foil pouches that exclude moisture during storage. Inspect each foil
 pouch before opening. Do not use devices that have holes in the foil or where the pouch has not
 been completely sealed. Erroneous result may occur if test reagents or components are improperly
 stored
- All patient specimens should be handled and discarded as if they are biologically hazardous. All
 specimens must be mixed thoroughly before testing to ensure a representative sample prior to
 testing.
- Failure to bring specimens and reagents to room temperature before testing may decrease assay sensitivity. Inaccurate or inappropriate specimen collection, storage, and transport may yield false negative test results.
- Avoid skin or eyes contact with buffer before, during or after testing.
- If infection with SARS-CoV-2 is suspected based on current clinical and epidemiological screening criteria recommended by public health authorities, specimens should be collected with appropriate infection control precautions and sent to state or local health departments for testing.
- . Do not puncture the membrane in the extraction tube before testing .
- Viral isolation in cell culture and initial characterization of viral agents recovered in cultures of SARS-CoV-2 specimens are NOT recommended, except in a BSL3 laboratory using BSL3 work practices.

STORAGE AND STABILITY

- Store The COVID-19 Antigen Nasal Test Kit at 2~30°C when not in use.
- DO NOT FREEZE.
- Kit contents are stable until the expiration dates marked on their outer packaging and containers.

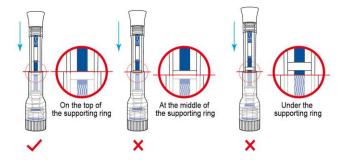
TEST PROCEDURE


Bring devices, reagents and specimens and/or controls to room temperature (15~30°C) before use.

- Remove the test from its packing. Label the test with the patient's identification. For best results, the assay should be performed within one hours.
- 2. 1) Take the test device out of the extraction tube.
- 2) Remove the protector.

- Gently insert the sample collector (the circle part in the picture) until resistance is met (about 1-2 cm into the nostril).
- 4. Rotate the collector five times against the nasal wall and remove from the nostril.
- Repeat the sample collection procedure for the other nostril to ensure that sufficient specimen be collected from both nasal cavities.

Note: 1). It is important to obtain as much secretion as possible.


- 2). This may feel uncomfortable. Do not insert the collector any deeper if you feel strong resistance. Children aged 2-15 years should be tested by an adult (18+ years old).
- Place the test device vertically into the extraction tube until the top edge of the extraction tube reach the top of the supporting ring.
- 7. Read the results at 15 minutes.

Note:

When placing the test device vertically into the extraction tube, the edge of the extraction tube must reach the top of the supporting ring. If not, this may lead to lateral flow failure, resulting in an incorrect result or invalid result.

RESULT INTERPRETATION

POSITIVE: Two colored bands appear on the membrane. One band appears in the control region (C) and another band appears in the test region (T).

NEGATIVE: Only one colored band appears, in the control region (C).

No apparent colored band appears in the test region (T).

INVALID: Control band fails to appear. Results from any test which has not produced a control band at the specified read time must be discarded. Please review the procedure and repeat with a new test. If the problem persists, discontinue using the kit immediately and contact your local distributor.

NOTE:

The color intensity in the test region (T) may vary depending on the concentration of analytes
present in the specimen. Note that this is a qualitative test only, and cannot determine the
concentration of analytes in the specimen.

QUALITY CONTROL

Internal Procedural Controls

The COVID-19 Antigen Nasal Test Kit has built-in (procedural) controls. Each test has an internal standard zone to ensure proper sample flow. The user should confirm that the colored band located at the "C" region is present before reading the result.

External Positive and Negative Controls

Good laboratory practice suggests testing positive and negative external controls to ensure that the test reagents are working and that the test is correctly performed.

LIMITATIONS OF THE TEST

- The COVID-19 Antigen Nasal Test Kit is for professional in vitro diagnostic use, and should
 only be used for the qualitative detection of SARS-CoV-2 antigen. The intensity of color in a
 positive band should not be evaluated as "quantitative or semi-quantitative".
- Both viable and nonviable SARS-CoV-2 viruses are detectable with The COVID-19 Antigen Nasal Test Kit.
- As with all diagnostic tests, a definitive clinical diagnosis should not be based on the results of a single test, but should only be made by the physician after all clinical and laboratory findings have been evaluated.
- Failure to follow the TEST PROCEDURE and RESULT INTERPRETATION may adversely affect test performance and/or invalidate the test result.
- Results obtained with this assay, particularly in the case of weak test lines that are difficult to interpret, should be used in conjunction with other clinical information available to the physician.
- Negative results do not preclude SARS-CoV-2 infection and should be confirmed via molecular assay.

PERFORMANCE CHARACTERISTICS

Analytical Sensitivity (Limit of Detection):

The limit of detection was determined with a quantified SARS-CoV-2 virus and has been evaluated at $1\times 10^{2.4}~TCID_{50}/mL$.

The limit of detection was also determined with recombinant SARS-CoV-2 nucleoprotein and has been evaluated at 370 pg/mL.

Clinical Evaluation:

A total of 508 clinical specimens were collected to verify the performance of COVID-19 Antigen Nasal Test Kit. There were 106 positive specimens from the individuals who were suspected of COVID-19 within 7 days of symptom and 402 negative clinical specimens confirmed by RT-PCR. The results were summarized below:

Table: COVID-19 Antigen Nasal Test Kit vs. RT-PCR

		RT-PCR		
		Positive	Negative	Total
COVID-19 Antigen	Positive	104	1	105
Rapid Test	Negative	2	401	403
Total		106	402	508

Relative Sensitivity: 98.1 % (93.4% ~ 99.5%)*
Relative Specificity: 99.8 % (98.6% ~ 100.0%)*
Overall Agreement: 99.4 % (98.3% ~ 99.8%)*

*95% Confidence Interval

Cross Reactivity:

Cross reactivity with the following organisms has been studied. Samples positive for the following organisms were found negative when tested with the COVID-19 Antigen Nasal Test Kit.

Adenovirus 1	MERS-coronavirus	Bordetellaparapertussis
Adenovirus 2	SARS-coronavirus	Bordetella pertussis
Adenovirus 3	Human metapneumovirus	Candida albicans
Adenovirus 4	Influenza A (H1N1)pdm09	Chlamydia pneumoniae
Adenovirus 5	Influenza A (H3N2)	Group C Streptococcus
Adenovirus 7	Influenza B Victoria lineage	Haemophilusinfluenzae
Adenovirus 55	Influenza B Yamagata lineage	Legionella pneumophila
Epstein-Barr virus	Norovirus	Mycoplasma pneumoniae
Enterovirus EV70	Parainfluenza virus 1	Mycobacterium tuberculosis
Enterovirus EV71	Parainfluenza virus 2	Staphylococcus aureus
Enterovirus A16	Parainfluenza virus 3	Staphylococcus epidermidis
Enterovirus A24	Parainfluenza virus 4	Streptococcus agalactiae
Enterovirus B1	Respiratory syncytial virus A	Streptococcus pneumoniae
Echovirus 6	Respiratory syncytial virus B	Streptococcus pyogenes
HCoV-229E	Rhinovirus A30	
HCoV-OC43	Rhinovirus B52	
HCoV-NL63		

Interfering Substances
The following substances, naturally present in respiratory specimens or that may be artificially introduced into the respiratory tract, were evaluated at the concentrations listed below. None of them were found to affect test performance of The COVID-19 Antigen Nasal Test Kit.

Substance	Concentration	Substance	Concentration
3 OTC nasal sprays	10%	Guaiacol glyceryl ether	20mg/mL
3 OTC mouth washes	10%	Mucin	1%
3 OTC throat drops	10%	Whole blood	4%
4-acetamidophenol	10 mg/mL	Mupirocin	250 μg/mL
Acetylsalicylic acid	10 mg/mL	Oxymetazoline	25 μg/mL
Albuterol	10 mg/mL	Phenylephrine	10 mg/mL
Chlorpheniramine	5 mg/mL	Phenylpropanolamine	1mg/mL
Dexamethasone	50μg/mL	Zanamivir	10mg/mL
Dextromethorphan	10μg/mL	Adamantanamine	500 ng/mL
Diphenhydramine	5 mg/mL	Oseltamivir phosphate	10mg/mL
Doxylamine succinate	1 mg/mL	Tobramycin 10mg/mL	
Flunisolide	25μg/mL	Triamcinolone 14mg/mL	

LITERATURE REFERENCES

- Forni, D., Cagliani, R., Clerici, M. & Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35-48 (2017).
- Ithete, N. L. et al. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 19, 1697-1699 (2013).

GLOSSARY OF SYMBOLS						
REF	Catalog number	1	Temperature limitation			
	Consult instructions for use	LOT	Batch code			
IVD	In vitro diagnostic medical device	8	Use by			
1	Manufacturer	Ā	Contains sufficient for <n> tests</n>			
2	Do not reuse	EC REP	Authorized representative in the European Community			
CE	CE marking according to IVD Medical Devices Directive 98/79/EC					

Assure Tech. (Hangzhou) Co., Ltd. Building 4, No. 1418-50, Moganshan Road, Gongshu District, Hangzhou, 310011Zhejiang, P.R. China

Lotus NL B.V. Koningin Julianaplein 10, le Verd, 2595AA,The Hague,Netherlands